
Reading the Game: Predicting Soccer Defender Movement Using
Neural Networks

Ethan Creagar
ethancreagar@gmail.com

Colorado State University Honors Program
Fort Collins, Colorado, USA

ABSTRACT
Perhaps the most important development in 21st century sports
analytics has been the popularization of a form of data called track-
ing or GPS data. With high-tech camera arrays placed strategically
around professional sports stadiums, analysts have access to every
movement a player makes during a game or match at a rate of 25
frames per second. These data are commonly used for analyzing
patterns in play of a player or team, calculating average positions or
formations, or identifying specific in-game situations that might be
of interest to a coaching staff. However, when it comes to making
predictions about teams or players, tracking data’s potential is just
starting to be tapped. This thesis will discuss experimentation with
sizes and structures of neural networks to create an accurate move-
ment prediction model and discuss the feasibility, most desirable
features and parameters, and potential of such models.

1 INTRODUCTION
Predicting movement is something that players on a soccer pitch do
every moment. For attackers, prediction of a defender’s movement
or overall tendencies can be crucial when making a split second
decision of where to play the ball, whether to make an attacking
run, or which direction to dribble to relieve pressure. The skill of a
top-class attacker is manipulating defensive players and structures
through their understanding of what a defensive player or play-
ers would be expected to do in any given situation and reacting
accordingly. Using the power of soccer tracking data and neural
networks, we can attempt to create a prediction algorithm that acts
like a world class attacker, predicting the movement of defensive
players based on the on field factors at any given movement.

1.1 Motivation
There are many situations when knowing how defenders in general
or a specific defense are likely to react to a situation would be valu-
able. For example, set pieces and corner kicks are often an area of
interest for analysts and coaching staffs, and predicting movement
in these dead-ball situations based on player location and ball posi-
tion might assist in understanding the defensive patterns that teams
are most likely to use. Movement prediction might also be useful in
quantifying the unpredictability of a player or team, or classifying
a general team defensive style. If a player pressures the ball more
often than our model expects them to, we might classify them as
being more aggressive than expected. This play-style classification
might also extend to use in more specific scenarios. We could find
instances of a certain passage of play, like a switch from one side of
the field to another, and use the same movement prediction analysis
to help us understand how a defender or team responds to that sit-
uation compared to the expected response that we obtain from our

predictions. By analyzing a variety of situations this way, we could
start to understand the best ways to create space against a certain
team, or why a team is more vulnerable in some situations than
others. Play-style classification might also be useful as an extension
of Similarity Scores, a popular method of quantifying how similar
two players are across teams or leagues used by scouts and analysts
at professional clubs. Similarity Scores were first popularized by
Bill James in 1994 when he attempted to develop a model which
explained how similar two baseball players were by examining both
physical traits and play style. This model has been shown to be very
good at forecasting a player’s future through an extension called
PECOTA, developed by Nate Silver in 2003 for Baseball Prospectus
[1]. By adding a measure of in-game movement tendencies, we may
be able to provide even more accuracy to these scores.

2 REVIEW
2.1 Previous Discussion
Due to the recent popularization of tracking data combined with
the recency of the current boom in the use of Neural Networks
[2], prediction of player movement in this manner would not have
been considered a possibility as recently as 10 years ago. Modern
Neural Net location prediction systems in general saw some usage
in the early 2000’s [3], and by the mid 2010’s, Neural Net location
prediction was being widely used [4] [5].

Soccer analytics was also an emerging field in the mid 2010’s.
One of the seminal analytics measures called expected goals, or
"xG", was introduced in 2012 by Sam Green while working for Opta
Sports [6] (expected goals were studied as early as 2004 [7], but
Green’s model popularized the method and nomenclature). This
metric examined the likelihood of a shot being scored based on
location, defender position, and other relevant information. Aside
from "expected" statistics like xG, the analytics side of the game
has made slow advancements until the late 2010’s, when more
advanced measures of the game like pitch control [8] and off-ball
scoring opportunities [9] rose in popularity.

In the same time frame, professional sports analytics depart-
ments began using advanced prediction methods on tracking data,
when the Toronto Raptors developed a method for analyzing player
decisions that they called "ghosting" [10]. Though the Raptors’
method was effective and revolutionary, it would still be four years
until Neural Networks were used on tracking data, when a research
group from California Institute of Technology and Disney led by
Hoang M. Le published their paper on ghosting using Deep Imita-
tion Learning [11]. This paper explored the usefulness of modeling
defensive situations using Deep Learning with Long Short Term
Memory Netwoks. The researchers attempted to model the average
decisions that a defender would make using Imitation Learning

methods, as well as developing specific ghosting models for each
team in the premier league. This research would be translated over
to the NBA, where Thomas Seidl extended ghosting to predict how
a defense would be likely to react to a play drawn in real time by a
coach on the sidelines in a product he called "Bhostgusters" [12].
Seidl also pointed out some shortcomings of Le’s method, stating
that "Although [Le’s method] could model the tendencies of specific
teams, it didn’t take into account the relevant context, such as the
score, the fatigue of the players, etc". Seidl used what he called
Deep Multi-Agent Imitation Learning, a system comprised of five
distinct two-layer LSTM models, one for each "role" or position on
the basketball court.

3 EXPERIMENTS
3.1 Formulation
I am interested in exploring three main points through the experi-
ments in this paper:

• Is it possible to predict player movement using Neural Net-
works? What are the challenges, drawbacks, and benefits of
different approaches?

• What data structures, types of models, and model parameters
provide the best prediction accuracy? What other types of
models might we try with more resources?

• How could we use these results in an analytics environment?
What future extensions might help maximize their utility?

In an analytics environment, any questions we choose to explore
must be evidently useful and explainable, as any results will need
to be explained to non-technical stakeholders such as members of
the coaching staff or even players. To this end, we will focus on
questions of accuracy, usefulness, and feasibility in the discussion
of our models.

To answer these questions, we will first run somewhat simple
experiments that evaluate simple performance indicators that our
models must satisfy to be considered useful. For example, we must
ensure that our predictions are getting the direction of movement
correct at least over half of the time, or there will be no point in
examining the predictions any further. We will evaluate this by
comparing our prediction error to the error were we to predict no
movement at all, and claiming that the proportion of models that
out perform a no-movement prediction is a proxy for the utility of
predicting a player’s movement at the given step size. By examining
many models, we will also be able to test different structures of
networks to create some general guidelines of what tuning param-
eters might help our networks achieve their maximum accuracy.
Finally, we will examine the methods in which our results might be
useful in an analytics environment, and describe the attributes that
our model would need to display to make the use of these methods
realistic.

3.2 Methods
In the first phase of modeling, I will evaluate the overall usefulness
and feasibility of predicting the way in which a defender moves on a
soccer field by predicting one small movement from the defender’s
current position. To have success in future experiments, we will
count on the fact that movement is predictable at all, which is not

trivial. At any given moment, a player may move in a 360◦ radius
at a range of different magnitudes. Given that a player can move at
10 m/s at maximum speed, their possible movement after 5 frames
(0.2 seconds) can land anywhere in a 2m circle, an area of 4𝜋m, or
about 12.5m. Of these 12.5m worth of possibilities for prediction,
only about 𝑟2 ∗ (2𝜋3 −

√
3
2) or ≈ 4.9m worth of the prediction gives

us an estimate that is closer to the point than no prediction at all1
This area, about 40% of the circle, is illustrated below.

Figure 1: The area in which a prediction made by a model is
better than predicting no movement at all..

To perform these initial experiments, I will test various neural
network structures for frame step sizes of 1, 10, and 25. To examine
which neural network structures work best, I will experiment with
different numbers of hidden layers, numbers of nodes in each hid-
den layer, activation functions in each hidden layer, and batch sizes
for the training of the networks. For this phase, all of the neural
networks are created in Keras and Pytorch, as they allows for cus-
tomization of each layer. Using these packages, we can specify all
of the details of the layer like the number of inputs, size of the layer,
and activation function. Our networks will all be Feed-Forward
networks which use back propagation to learn and correct their
patterns. With this method, we calculate the error in every layer in
terms of the error in the next layer via the formula

𝜖𝑙 = ((𝑤𝑙+1)𝑇 𝜖𝑙+1) ⊙ 𝜎 ′(𝑧𝑙)2 (1)

We can also add as many layers as we want to, leading to a
highly flexible style of model creation. When creating these Neu-
ral Networks and testing which network structures work best for
the application of player movement prediction, I will follow some
Neural Network rules of thumb [13].

• The number of hidden neurons should be between the size
of the input layer and the size of the output layer.

• The number of hidden neurons should be 2/3 the size of the
input layer, plus the size of the output layer.

1We can think of this as the intersection of two circles at their midpoints. If we label
the points of intersection A and B and the centers of the circles C and C’, we can see
that CC’, AC, AC’, BC, etc. are al the same length, r. One half of this area is then the
area of a circular segment with radius r and angle 2𝜋

3 (the angle ACB). The total area

is then 𝑟 2 (𝜃 − 𝑠𝑖𝑛 (𝜃)) , or 𝑟 2 (2𝜋3 −
√
3
2)

2where 𝜖 denotes the error vector, 𝑙 denotes denotes the current layer, 𝑤 denotes the
weight vector, 𝑧𝑙 is the weighted input to the neurons in layer 𝑙 , and ⊙ denotes the
Hadamard product (elementwise product) between two vectors.

2

• The number of hidden neurons should be less than twice the
size of the input layer.

Following these patterns, I will construct many neural networks,
using the cross-validation techniques naturally supplied in the
Keras and Pytorch packages. I will also experiment with layers of
hidden neurons that expand the input space by containing more
neurons than the input layer. Furthermore, I will test several of neu-
ral network depths to examine the effectiveness of using shallow
and deep networks. Following the trend in recent years of expand-
ing neural network depth, I will train networks from 1 hidden layer
to 4 hidden layers in depth and compare them. By using a variable
number of neurons and weights, we may allow our networks to
better approximate the functions and linear relationships between
the input variables and target variables. Our networks will use two
output neurons, one for the predicted x position and one for the
predicted y position.

We will look to minimize the difference between the prediction
and the actual position of the player after the selected number of
frames. We will evaluate the effectiveness of the predictions via
the Mean Squared Error of the Euclidean Distance between the
prediction and actual values:

1/𝑁
𝑁∑︁
𝑖=1

(𝑥𝑖_𝑝𝑟𝑒𝑑 − 𝑥𝑖)2 + (𝑦𝑖_𝑝𝑟𝑒𝑑 − 𝑦𝑖)2

2
(2)

Our first predictions will be made for one step size only. We
will fit many networks using the rules mentioned above, and eval-
uate the error of these predictions using equation 2, analyzing
the player’s actual position at the frame against our prediction of
his position at the frame. For the smaller step sizes, we will also
evaluate the error that would result in our network predicting no
movement at all on the test set; this will give us an indication of
whether the model is predicting the correct direction of movement
for the frame.

After this initial testing phase, I will begin implementing the
networks that make sequential predictions based on a starting
position and the attacking player movement. These networks will
give us the ability to move beyond prediction of one movement and
into more realistic player movement forecasts. For this purpose, we
will use a form of sequential networks called LSTMs [14].

These networks are more complex than the simple feed-forward
networks used above, but also provide major advantages, like the
ability to predict full sequences as well as the ability to learn mul-
tiple sequences at once through batch learning [15]. LSTMs differ
from vanilla Recurrent Neural Networks (RNNs) through the addi-
tion of "gates" that help regulate the flow of information through
the network. Through this added complexity, LSTMs retain the
ability of RNNs to hold a "state" and keep track of long-term depen-
dencies in data, but do not have the same vanishing gradient issues
that RNNs tend to have [16]. The addition of a "forget" gate also
allows the network to releases information that it doesn’t deem
important while holding the rest of the information constant from
state to state. All of the LSTMs trained will use an Adam optimizer
[17].

For our purposes, this means that the LSTMs trained for defend-
ers will not only look at the positions of the attacking team and
ball at the time of prediction like in the previous models, but will

also learn movement based on their previous positions as well as
the defender’s previous positions. By forming these dependencies
between all of the given predictors and responses, the networks will
then predict smooth movement for defenders rather than singular
predictions.

Following the thought process from Seidl’s ghosting models,
we will train separate LSTM’s for different "roles" on the soccer
field. However, this is not as straight forward as defining roles in
basketball, where lineups of 5 are created with 5 distinct positional
archetypes. Soccer has many different possible formations and is
extremely fluid in terms of team structure and organization, making
positional tagging much tougher. To get around this, we will train
LSTMs to learn the reactions of the defenders by proximity to the
ball, using separate models for each of the 5 nearest defenders to
the ball. These models will make the assumption that team and
opponent do not make a difference in the ways in which defenders
will defend, but further extensions of the models would have the
ability to learn different team defending styles through the addition
of more training examples.

These sequential methods will provide insight about how to
implement a ghosting algorithm like the one implemented in the
NBA [12] for prediction of a defense’s movement based on a drawn
offensive play. To evaluate the accuracy of this prediction method,
we will still use equation 2, but this time we will be predicting the
difference between the player’s true position after multiple steps
and the position that we predicted at the same moment.

3.3 Data
Tracking data is a difficult thing to obtain. The vast majority of
tracking data is owned by clubs and data providers, and any free
data has great limitations. Therefore, all of the data used for these
models is privately owned and will not be shared, but has been
authorized for use on this paper. The data used for training and
testing the model will be tracking data from the Friends of Tracking
research group [18] as well as from Nashville Soccer Club. The
full data from Nashville SC contains every player’s position at 25
frames per second for a ninety minute match, resulting in a total of
22 ∗ 25 ∗ 60 ∗ 90 ≈ 3𝑚𝑖𝑙 . data points for each match. Before cleaning,
the data are in a JSON format with each frame and player listed
separately.

{’period’: 1,
’frameIdx’: 0,
’gameClock’: 0.0,
’wallClock’: 1619287681553,
’homePlayers’: [’playerId’: ’95309’, ’number’: 1, ’xyz’: [-49.19,

0.24, 0.0], ’speed’: 0.0,
...],
’awayPlayers’: [’playerId’: ’119575’, ’number’: 30, ’xyz’: [-0.58,

-14.8, -0.0], ’speed’: 0.0,
...],
’ball’: ’xyz’: [-0.02, 0.07, 0.34], ’speed’: 10.15,
’live’: False,
’lastTouch’: ’home’}
After cleaning the data, we will have a more usable format which

contains information abut the game clock, ball location, player
location, and player unit (defense, midfield, attack), as well as the

3

response variables containing those players’ positions 1, 10, and 25
frames into the future.

I will be using two matches for the training from this Nashville
data, which will be the matches between Nashville SC and Montreal
CF on the 24th of April, 2021 and between Nashville SC and New
England Revolution on the 8th of May, 2021. In total, we will have
about 2 million data points from these matches after filtering out
defensive players and goalkeepers, as we won’t be interested in the
prediction of these players’ movement. For the sequential predic-
tion, we will be training on threatening attacking moves that either
end in a shot or a turnover after a sustained period of possession.
The Friends of Tracking Data is more limited; it only contains about
14 players in each frame and frames are only captured at a rate of
10 per second. For this reason, this data will be used for testing and
analysis of the model only. This could cause biases in the results, as
the leagues in the two matches are different and the analysis data
will have missing players. This paper will therefore should serve
as an academic example of how Neural Networks could be used in
player movement prediction rather than providing a detailed anal-
ysis of player specific results. Accurate, detailed player analysis is
a possible extension of the model if and when the data is available.

For the sequential models, we need to find longer sequences
of data, each coming from an attacking situation such that target
players are only being tracked while they are defending. We start
with sequences leading up to shots, of which there are 51 between
the twomatches, and supplement this data withmore long attacking
sequences found in the data. In all, this gives us 211 attacking
sequences to train and test our networks on, which is not as many
as we would like for training of LSTMs in practice, but will be
sufficient for our purposes.

4 RESULTS
4.1 Single-step predictions
Training the Feed-Forward Neural Network models in the one-step
prediction approach yield the results found in the appendix of the
paper in tables 4, 5, and 6. The three best models for each prediction
interval (1 frame, 10 frames, and 25 frames) are below (the models
are also highlighted in yellow in the results tables in the appendix).
In these results, we transpose the error units from theMean Squared
Test Error that we used to validate the models into yards to obtain
units that we are familiar with, but the true MSE can also be viewed
in the results in the appendix. This transposition is necessary due
to the min-max scaling and standardizing of the variables before
fitting our networks. 3

Layer Sizes Batch Size Activation Error (yards)

0 0 Last Position 0.085
50, 25, 12, 6 100 ReLu, Sigmoid, R, S 0.085

24 100 R 0.086

Table 1: Predicting movement 1 frame ahead.

3ReLu (R) and Sigmoid (S) will be abbreviated after the first use of the terms. For
further explanation on these tables and models, please check Methods (section 3.2)
and the Appendix.

In our predictions of one frame ahead, no models performed
much better than simply predicting the same position that the
player was in in the last frame. This is not necessarily surprising - a
player can only move so much in 1/25th of a second. Of the models
that get close to predicting the same position, one is our deepest
network with four layers of size 50, 25, 12, and 6. The Activation
functions in this network are alternating, and it uses the mini batch
algorithm described in section 3.2. Figure 2 in the appendix shows
an example of a good prediction made for a step size of 1 frame.

Layer Sizes Batch Size Activation Test Error

0 0 Last Position 0.75
50, 25 100 R, S 0.617

50, 25, 12, 6 100 R, S, R, S 0.623
24, 12, 6 100 R, R, R 0.635

Table 2: Predicting movement 10 frames ahead.

In our predictions of the 10th frame in the future, most of the
models that we fit are able to beat a prediction of the position
previous, which means the models are at least picking the right
direction of movement on average. Our best model is one which
uses two layers of sizes 50 and 25, with ReLu and Sigmoid activation
functions respectively. All of the best models are deeper than one
layer, and two of the three use at least one Sigmoid activation
function. The mini-batch method consistently performs the best
once again. Figure 3 in the Appendix shows an example of a bad
prediction made for a step size of 10 frames ahead.

Layer Sizes Batch Size Activation Error (yards)

0 0 Last Position 1.658
50, 25 100 R, S 1.516
24, 12, 6 100 R, R, S 1.524

50, 25, 12, 6 100 R, S, R, S 1.538

Table 3: Predicting movement 25 frames ahead

In the predictions of 25 frames into the future, almost all of the
models fit outperform the prediction of the player’s last position,
which again means that the models are at least tending to pick
the right direction of player movement. However, the predictions
are not very close to the actual position, with the best one being
about 1.51 yards away from the player’s actual position on average
whereas guessing the same exact position the player was just in
would yield an average error of 1.66 yards. We see many of the same
models performing well; the best model uses two layers of size 50
and 25, with a ReLu and Sigmoid activation function respectively.
Making the list of the top three models again is the network 4
layers deep, with alternating ReLu and Sigmoid activation functions.
Again, the mini-batch method performs the best on the data. Figure
4 shows an example of a good prediction that our models made for
a step size of 25 frames.

The two consistently best performing networks had some simi-
larities: their first hidden layer contains 50 nodes and their second

4

hidden layer contains 25 nodes. The two networks both use our
mini-batch training method with a batch size of 1/100th of the total
data. They also shared the similarity that their first hidden layer
used ReLu activation functions, while the second used a Sigmoid ac-
tivation function. The shallower network tended to perform better
on the larger prediction steps (10 and 25), while the deep network
made the best predictions on the prediction of 1 frame. The shal-
lower network contains 90 nodes and 1950 edges, while the deeper
network contains 108 nodes and 2284 edges. All of the layers in
both networks are dense layers, which means that each of their
neurons receive input from all neurons of the previous layer.

4.2 Sequential predictions
Moving away from single-step predictions to more realistic pre-
diction scenarios, we will analyze the results from our sequential
networks. These results will differ from the single-step predictions
in several ways, the most obvious being the error reported. Rather
than reporting the error at the end of the series of frames, we re-
port the average error over the number of predictions made in the
sequence. This means that the errors between the two types of
prediction cannot be directly compared, and should instead only
be compared to other networks of the same structure.

As mentioned before, the sequential networks were created with
LSTM models ranging in size and structure. The architecture of
these networks ranged from 1 LSTM network with 1 layer of 5
hidden units to 3 stacked LSTMs with variable hidden layer sizes,
giving the networks many chances to approximate the function of
player movement as accurately as possible. Many more network
architectures were tested, but only a few are shown below for
brevity.

The results of fitting several LSTM structures using 5-fold cross-
validation are displayed in the table below.

Hidden units by layer Epochs Test Error (yards)

1 100 22.62
5, 5 100 8.14

25, 25, 25 100 13.19
1 1000 22.79
5, 5 1000 6.25

25, 25, 25 1000 10.11
1 2500 16.93
5, 5 2500 8.82

25, 25, 25 2500 13.21

Table 4: Sequential Predictions

We use a linear network, 1 layer and 1 hidden unit, as a baseline
for the rest of our models. We notice that adding more layers and
hidden units does improve the network over the linear network,
though the networks are prone to over-fitting. The networks with 2
hidden layers and 5 hidden units per layer performed the best across
the number of epochs, and performed best itself after training with
1000 epochs, where the network performed at an error average of
6.1 yards.

These networks tended to make predictions that were quite good,
even in their worse cases. Examples of predictions made with our

best model, ranging from very good to relatively poor, are shown
in figures 5 through 8.

5 DISCUSSION
We will first aim to answer the first two questions in the Formula-
tion section regarding the feasibility of offensive player movement
prediction using Neural Networks and the tuning parameters that
result in the best predictions.

The predictions made in our networks did generally beat the
prediction no movement, but not always by as much as we might
expect or want them to if we were putting a model into produc-
tion at a club. Still, it is positive that we did beat a prediction of
no movement, because this tells us that our predictions were gen-
erally in the correct direction of movement. We could describe
the level of utility in our model’s prediction of a new point as
𝑝𝑜𝑖𝑛𝑡𝑛𝑜 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡−𝑝𝑜𝑖𝑛𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑝𝑜𝑖𝑛𝑡𝑛𝑜 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡
, where a higher percentage number

describes a better prediction model. With this metric, evaluating
our best prediction for each model type would yield the results in
table 6.

Step Size of Predictions Utility

1 0%
10 17.7%
25 8.5%

Sequential 72.5%
Table 5: The percentage utility, defined as the improvement
over over predicting no movement, of making a prediction
with our best model for each step size.

Our sequential predictions provide more utility than our one step
predictions. The defending players moved more in the sequential
prediction phase since more frames were shown, but the sequential
models also almost never predicted incorrect directions of move-
ment on the test cases.

5.1 Applications
It is imperative to any analytics method that we consider in a
professional environment that it provide feasible and actionable
applications. There are two applications that immediately stand
out: one being an extension of player similarity scores and the other
being a ghosting model such as the ones created by Le and Seidl.

To provide an insight into player similarity or play style classifi-
cation, we can use our model to predict the direction that a player
is expected move in a given situation. We can then observe the
player’s actual movement, and classify certain characteristics about
their play such as their level of unpredictability in movement and
their level of aggressiveness in defensive movement compared to
what is expected. To explore these questions, we will use the best
of our trained sequential models, analyzing sequences of play in
which a defender makes a movement in response to attackers.

This metric will be most useful when comparing players making
movements in similar situations in a match (for instance, when they
are the on-ball defender). We can find all situations like this, make
predictions of how a given defender will move in the situation, then

5

compare this to how the defender actually moves. Due to a lack
of data, we will use our testing sequences as an example, but in
practice we could apply our model to many situations over several
matches to get a more robust similarity metric.

Table 6 shows the results of running our prediction model in
these situations and comparing the actual movement of a player
to the expected movement. We use an angle measurement to do
so, where 180◦ points directly toward the opponent’s goal, and 0◦
points toward the player’s own goal. The numbers below denote a
difference in the true movement vs. expected movement: a negative
value denotes a defender moving more toward their own goal than
expected, while a positive value denotes a defender moving more
toward the opponent’s goal than expected. These can be translated
as being more or less aggressive as an on-ball defender.

The graphics for the two attacking scenarios analyzed are found
in figures 9 - 12 in the appendix. In the first play, we see that the pre-
dicted attacker movement is small, and that the true movement of
CFMontreal’s Center BackAljaz Struna follows this predictedmove-
ment quite closely. We then find a similar attacking scenario, and
notice that Nashville SC’s Right Back Alistair Johnston is slightly
more toward the opponent’s side of the pitch than the predicted
movement. We can quantify these differences as average movement
vs. expected:

Player Avg. Movement vs. Expected

Johnston 24.4◦
Struna 9.2◦

Table 6: Defensive player movement in attacking scenarios
found in figures 9-12.

In our results, see that though both players move slightly more
aggressively than expected, Johnston moves an average of about 15
degrees more aggressively toward the opponent’s end of the field
than we would expect him to.

This analysis gives us an insight into player movement and
allows us to compare the movement across situations and players.
This comparison is just over one attacking sequence, and more data
would lead to more interpretable and stable play-style metrics.

The other application for our model is for ghosting, or creating
predictions of how players will move for longer periods of time. To
create a ghosting model, we can train sequential networks to learn
movement in different defensive roles, defined here by proximity to
the ball such that the on-ball defender is one role, the second closest
defender is another, and so on. We can then make predictions about
the movement of each player in each role on real or created data
to see the predicted ways in which defensive players will react to
an an attacking movement. An example of a ’ghosted’ prediction is
shown in figure 13 in the appendix. More data would improve this
ghosting model as well and would allow for interesting extensions,
such as the creation of a separate ghosting model for different
players and/or teams.

5.2 Conclusion
We began by asking whether it was possible to predict player move-
ment with neural networks, the types of data structures and models

that might allow us to do so, and how we could use the results in an
analytics environment. We can now say that predicting defender
movement is possible to a fairly accurate level using sequential
models like LSTMs, and that similarity scores and ghosting models
are possible use cases for these prediction models in an analytics
environment.

ACKNOWLEDGMENTS
Thank you to:

• David Sumpter, SkillCorner, and the Friends of Tracking
research group for allowing me to use the tracking data
highlighted in this paper.

• Caleb Shreve and Nashville Soccer Club for allowing me to
use their tracking data for this research.

• Aaron Nielsen, thesis advisor.
• Ben Prytherch, thesis committee member.

6

REFERENCES
[1] Nate Silver. Introducing PECOTA - p. 507-514. Gary Huckabay, Chris Kahrl, Dave

Pease et al., Eds., Baseball Prospectus 2003, 2003.
[2] Quentin Hardy. Reasons to believe the AI boom is real. 2018.
[3] Lucian Vintan, Arpad Gellert, Jan Petzold, and Theo Ungerer. Person movement

prediction using neural networks. Institut Für Informatik, 2004.
[4] Abdulrahman Al-Molegi, Mohammed Jabreel, and Baraq Ghaleb. Stf-rnn: Space

time features-based recurrent neural network for predicting people next location.
pages 1–7, 2016.

[5] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Predicting the next location:
A recurrent model with spatial and temporal contexts. Center for Research on
Intelligent Perception and Computing, 2016.

[6] Sam Green. Assessing the performance of Premier League goalscorers. Stats
Perform, 2012.

[7] Jake Ensum, Richard Pollard, and Samuel Taylor. Applications of logistic re-
gression to shots at goal in association football: calculation of shot probabilities,
quantification of factors and player/team. Journal of Sports Sciences, 2004.

[8] Javier Fernandez and Luke Bornn. Wide open spaces: A statistical technique for
measuring space creation in professional soccer. MIT Sloan Sports Conference,
2018.

[9] William Spearman and Luke Bornn. Beyond expected goals. MIT Sloan Sports
Conference, 2018.

[10] Zach Lowe. Lights, cameras, revolution. Grantland, 2013.
[11] Hoang M. Le, Peter Carr, Yisong Yue, and Patrick Lucey. Data-driven ghosting

using deep imitation learning. MIT Sloan Sports Conference, 2017.
[12] Thomas Seidl. Bhostgusters: Realtime interactive play sketching with synthesized

nba defenses. MIT Sloan Sports Conference, 2018.
[13] Jeff Heaton. Introduction to neural networks with java - chapter 5: Feed forward

neural networks, 2005.
[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 1997.
[15] César Laurant, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Bengi.

Batch normalized recurrent neural networks. 2015.
[16] Sepp Hochreiter. The vanishing gradient problem during learning: Recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 1998.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[18] SkillCorner via Friends of Tracking Research Group and David Sumpter. Premier
League freeze frames 2020-2021. Data Available by Request, 2021.

A EXTENDED RESULTS AND FIGURES
The following describe the models and errors (test MSE) for all of
the models that were fit, described in the experiments section.

Layer Sizes Batch Size Activation Test Error

0 0 Last Position 6.27E-05
24 1 ReLu (R) 0.0001
24 5 R 6.72E-05
24 100 R 5.68E-05
2 100 R 6.15E-05
20 100 R 5.68E-05
6 100 R 6.13E-05

12, 6 100 R, R 6.69E-05
24, 12 100 R, R 5.47E-05
50, 25 100 R, Sigmoid (S) 5.08E-05
24, 12, 6 100 R, R, R 5.36E-05
24, 12, 6 100 R, R, S 5.37E-05

50, 25, 12, 6 100 R, S, R, S 5.24E-05

Table 7: Predicting movement 10 frames ahead.

Figure 2: An example of a prediction made 1 frame ahead
with our best single-stepmodel (Error = 0.1 yards). Ball: black,
true player movement: purple, movement prediction: green

Figure 3: An example of a prediction made 10 frames ahead
with out best single-step model (Error = 0.8 yards).

7

Figure 4: An example of a prediction made 25 frames ahead
with our best single-step model (Error = 0.6 yards).

Figure 5: An example of a good prediction made 5 seconds
worth of frames ahead with our best sequential model (Error
= 1.2 yards). Note: In the sequential images, the red lines
denote the attackers, the black line denotes the ball’s move-
ment, the purple line denotes the defender’s true movement,
and the green shows the network’s prediction.

Figure 6: An example of a good prediction made 5 seconds
worth of frames ahead with our best sequential model (Error
= 2.4 yards).

Figure 7: An example of a prediction made 5 seconds worth
of frames ahead with our best sequential model (Error = 4.7
yards).

Figure 8: An example of a poor prediction made 5 seconds
worth of frames ahead with our best sequential model (Error
= 9.5 yards).

Figure 9: The predicted defender movement (green) in an
attacking scenario.

8

Figure 10: The truemovement (purple) of CFMontreal Center
Back Struna.

Figure 11: The predicted defender movement in a similar
attacking scenario.

Figure 12: The true movement of Nashville Right back John-
ston.

Figure 13: A ghosted prediction to an attacking sequence.

9

	Abstract
	1 Introduction
	1.1 Motivation

	2 Review
	2.1 Previous Discussion

	3 Experiments
	3.1 Formulation
	3.2 Methods
	3.3 Data

	4 Results
	4.1 Single-step predictions
	4.2 Sequential predictions

	5 Discussion
	5.1 Applications
	5.2 Conclusion

	Acknowledgments
	References
	A Extended Results and Figures

